M1. (a) $\mathrm{C}_{16} \mathrm{H}_{34}+24.5 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+17 \mathrm{H}_{2} \mathrm{O}$
Allow multiples
Ignore state symbols in equation
(b) Solidifies/freezes/goes viscous/waxing occurs

Allow does not vapourise/less volatile
Lack of Oxygen = 0
Apply list principle
(c) (i) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$

Allow multiples/Ignore state symbols in equation

Spark/(very) high temp $/ 2500{ }^{\circ} \mathrm{C}-4000^{\circ} \mathrm{C}$
Ignore pressure/catalyst/low \% of oxygen
Not just heat/hot
Apply list principle eg if high temp $150^{\circ} \mathrm{C}=0$
(ii) $2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$

Allow multiples/lgnore state symbols in equation

OR

$\mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{NO} \rightarrow 8 \mathrm{CO}_{2}+12.5 \mathrm{~N}_{2}+9 \mathrm{H}_{2} \mathrm{O}$
Allow other alkane reacting with NO in correctly balanced equation

OR
$\mathrm{C}+2 \mathrm{NO} \rightarrow \mathrm{CO}_{2}+\mathrm{N}_{2}$
OR
$2 \mathrm{NO} \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$

Pt/Pd/Rh/lr
Penalise contradiction of name and symbol
(iii) $4 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \rightarrow 4 \mathrm{HNO}_{3}$

Allow multiples/lgnore state symbols in equation
(d) (i) High temp/
anywhere in range $400^{\circ} \mathrm{C}-900^{\circ} \mathrm{C} /$
anywhere in range $670-1200 \mathrm{~K} / \mathrm{high}$ pressure/anywhere
in range 5000 kPa up to $8000 \mathrm{kPa} /$
Not catalyst/heat
(ii)
$\mathrm{C}_{16} \mathrm{H}_{34} \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}+2 \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{C}_{2} \mathrm{H}_{4}$
Or $\mathrm{C}_{16} \mathrm{H}_{34} \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{C}_{4} \mathrm{H}_{8}+3 \mathrm{C}_{2} \mathrm{H}_{4}$
Do not allow multiples
Ignore state symbols in equation
(iii) Polymers/plastics/named polymer

Allow polyesters or polyamides
Ignore object made from polymer

M2. (a) (i) any two from:
show a gradation/trend/gradual change in physical properties/ a specified property differ by CH_{2}
chemically similar or react in the same way have the same functional group
(penalise 'same molecular formula')
(penalise 'same empirical formula')
(ii) fractional distillation or fractionation
(iii) contains only single bonds or has no double bonds (credit 'every carbon is bonded to four other atoms' provided it does not contradict by suggesting that this will always be H)

1
(b) (i) the molecular formula gives the actual number of atoms of each element/type in a molecule/hydrocarbon/compound/formula (penalise 'amount of atoms')
(penalise 'ratio of atoms')
(ii) $\mathrm{C}_{14} \mathrm{H}_{30}$ only
(penalise as a contradiction if correct answer is accompanied by other structural formulae)
(iii) $\quad \mathrm{C}_{10} \mathrm{H}_{22}+5 \frac{1}{2} \mathrm{O}_{2} \rightarrow 10 \mathrm{C}+11 \mathrm{H}_{2} \mathrm{O}$
(or double this equation)
(c) (i) $1 / 2 \mathrm{~N}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{NO}$
(or double this equation)
(ii) Platinum or palladium or rhodium
(iii) $2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$ or
$2 \mathrm{NO} \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$ or
(ignore extra O_{2} molecules provided the equation balances)
$\mathrm{C}+2 \mathrm{NO} \rightarrow \mathrm{CO}_{2}+\mathrm{N}_{2}$
(or half of each of these equations)
$\mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{NO} \rightarrow 8 \mathrm{CO}_{2}+12 \frac{1}{2} \mathrm{~N}_{2}+9 \mathrm{H}_{2} \mathrm{O}$
(or double this equation)

M3. (a) (i) Covalent;
If not covalent $C E=0$. If blank, mark on.

Shared pair of electrons (one from each atom);
Not shared electrons.
(ii) Hydrogen bonds / H bonds;

Not just hydrogen.

Van der Waals/London/dispersion forces/temporary induced dipole;
(b) Showing all the lone pairs on both molecules;

Allow showing both lone pairs on the O involved in the H-bond.

Showing the partial charges on O and H on both molecules;
Allow showing both partial charges on the O and H of the other molecule involved in the H bond.

Showing the Hydrogen bond from the lone pair on O of one molecule to the delta + on the H of the other molecule;
(c) (i) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$;

Accept multiples.
Allow $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$.
(ii) CO is (produced which is) toxic/ poisonous/C (may be produced) which is toxic/ C is a respiratory irritant/ C (particles) exacerbate asthma/C causes global dimming/ smog;
(iii) More fuel needed (which costs more)/Wastes fuel/ less fuel burnt (so need more to buy more)/engine gets sooty so need to pay for engine to be cleaned/Have to fit catalytic converter;

Not just costs more.
Not engine gets sooty unless qualified.
(d) (i) (React) with $\mathrm{CaO} /$ calcium oxide/quicklime/lime;

Accept $\mathrm{CaCO}_{3} /$ calcium carbonate/limestone.
Not chalk.

All the sulfur dioxide may not react with the CaO or CaCO_{3} / may not have time to react/ incomplete reaction;

Accept incomplete reaction.
(ii) Occupies a (much) smaller volume;

Not easier to store or transport.

M4. (a) (i) single (C-C) bonds only/no double (C=C) bonds
Allow all carbon atoms bonded to four other atoms
Single C-H bonds only $=0$
$C=H C E$
C and H (atoms) only/purely/solely/entirely
Not consists or comprises
Not completely filled with hydrogen
CH molecules = CE
Element containing C and $H=C E$
(ii) $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$

Formula only $\mathrm{C}_{x} \mathrm{H}_{2 \times 2}$
(b) (i) $\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Accept multiples Ignore state symbols
(ii) gases produced are greenhouse gases/contribute to Global warming/effect of global warming/climate change

Allow CO_{2} or water is greenhouse gas/causes global warming
Acid rain/ozone $C E=0$
(c) carbon

Allow C
Allow soot
(d) (i) $\mathrm{C}_{9} \mathrm{H}_{20} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}+\mathrm{C}_{4} \mathrm{H}_{8}$

OR

$$
\begin{array}{r}
\mathrm{C}_{9} \mathrm{H}_{20} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}+2 \mathrm{C}_{2} \mathrm{H}_{4} \\
\text { Accept multiples }
\end{array}
$$

(ii) Plastics, polymers

Accept any polyalkene/haloalkanes/alcohols
(iii) so the bonds break $O \boldsymbol{O R}$ because the bonds are strong

IMF mentioned $=0$
(e) (i) 1,4-dibromo-1-chloropentane/1-chloro-1,4-dibromopentane Ignore punctuation
(ii) Chain/position/positional

Not structural or branched alone

If atomic numbers or molecular masses are used lose M2
1.854 .63
12.5
$\mathrm{N}_{2} \mathrm{O}_{5}$
(b) Toxic/poisonous/forms an acidic gas/forms NO_{2} which is acidic/ respiratory irritant/forms HNO_{3} when NO reacts with water and oxygen/ triggers asthma attacks/greenhouse gas/photochemical smog/ contributes to global warming/formation of acid rain ignore NO is an acidic gas or NO is acidic in water Not references to ozone layer
(c) $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$

Accept multiples or fractions of equation Ignore wrong state symbols
(d) Nitrogen $/ \mathrm{N}_{2}$ and oxygen $/ \mathrm{O}_{2}$ combine/react

$$
\text { QWC (not } N \text { and } O \text { combine) }
$$

Not nitrogen in fuel

$$
\text { Allow } \mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO} \text { for M1 only }
$$

(e) $2 \mathrm{NO}+2 \mathrm{CO} \rightarrow \mathrm{N}_{2}+2 \mathrm{CO}_{2}$

OR

$$
\begin{aligned}
& 2 \mathrm{NO} \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2} \\
& \quad \text { Accept multiples or fractions of equation } \\
& \quad \text { Ignore wrong state symbols } \\
& \quad \text { Allow } \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{NO} \rightarrow 8 \mathrm{CO}_{2}+12.5 \mathrm{~N}_{2}+9 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

(a) (i) $\mathrm{C}_{4} \mathrm{H}_{10}+6^{\frac{1}{2}} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$

Allow multiples
(ii) insufficient oxygen/low temperature/poor mixing of butane and air

Allow insufficient air
Allow lack or oxygen/air
Do not allow no oxygen
Not incomplete combustion
(b) (i) Sulfur dioxide/ SO_{2}

Allow sulfur trioxide/ SO_{3}
(allow spelling of sulphur to be sulphur)
(ii) It is basic/the gas $\left(\mathrm{SO}_{2}\right)$ is acidic

Idea of neutralisation
It = calcium oxide
(iii) bigger surface area to react Do not allow cheaper

